Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Pathol ; 190(3): 630-641, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32093902

RESUMO

The investigation of erythropoietin (EPO) has expanded to include potential nonhematopoietic roles in neural and retinal diseases, including diabetic retinopathy. However, it remains unclear how EPO functions to support the neural retina. Transgenic mice with hypoactive EPO receptor (EPOR) signaling (hWtEPOR) were compared with littermate control mice (WT) to test the role of EPOR signaling under normal conditions and after vascular injury and regrowth into the retina. Although retinal function tested with OptoMotry and electroretinography was comparable to adult (8-week-old) littermate WT mice, hWtEPOR mice had thinner inner and outer plexiform layers and a greater number of amacrine cells. Injury and repair caused by the oxygen-induced retinopathy model reduced visual acuity thresholds, reduced electroretinography amplitudes, and thinned the outer plexiform and inner nuclear layers of both WT and hWtEPOR 8-week-old mice. In hWtEPOR compared with WT mice, scotopic a-wave amplitudes were reduced by injury, despite no change in outer nuclear layer thickness; and peripheral rod, but not cone number, was reduced. Scotopic b-waves were reduced in injured hWtEPOR mice compared with WT, and rod bipolar cell ectopic neurites were increased in both genotypes after injury, suggesting a potential reparative process to preserve connectivity and the b-wave. Normal EPOR signaling appeared important because ectopic neurites and b-waves were lower in the hWtEPOR than WT injured mice.


Assuntos
Retinopatia Diabética/fisiopatologia , Eritropoetina/metabolismo , Receptores da Eritropoetina/metabolismo , Doenças Retinianas/fisiopatologia , Transdução de Sinais , Lesões do Sistema Vascular/fisiopatologia , Animais , Eletrorretinografia , Eritropoetina/genética , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Receptores da Eritropoetina/genética , Retina/fisiopatologia
2.
J Comp Neurol ; 528(7): 1140-1156, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31721194

RESUMO

Neural circuits in the adult nervous system are characterized by stable, cell type-specific patterns of synaptic connectivity. In many parts of the nervous system these patterns are established during development through initial over-innervation by multiple pre- or postsynaptic targets, followed by a process of refinement that takes place during development and is in many instances activity dependent. Here we report on an identified synapse in the mouse retina, the cone photoreceptor➔type 4 bipolar cell (BC4) synapse, and show that its development is distinctly different from the common motif of over-innervation followed by refinement. Indeed, the majority of cones are contacted by single BC4 throughout development, but are contacted by multiple BC4s through ongoing dendritic elaboration between 1 and 6 months of age-well into maturity. We demonstrate that cell density drives contact patterns downstream of single cones in Bax null mice and may serve to maintain constancy in both the dendritic and axonal projective field.


Assuntos
Células Bipolares da Retina/citologia , Células Fotorreceptoras Retinianas Cones/citologia , Sinapses , Animais , Feminino , Masculino , Camundongos , Neurogênese/fisiologia
3.
Angiogenesis ; 21(4): 765, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29943214

RESUMO

The article "Gene therapy knockdown of VEGFR2 in retinal endothelial cells to treat retinopathy", written by "Aaron B. Simmons, Colin A. Bretz, Haibo Wang, Eric Kunz, Kassem Hajj, Carson Kennedy, Zhihong Yang, Thipparat Suwanmanee, Tal Kafri and M. Elizabeth Hartnett", was originally published electronically on the publisher's internet portal (currently SpringerLink) on 05 May 2018 without open access. With the author(s)' decision to opt for Open Choice the copyright of the article changed on 20 June 2018 to © The Author(s) 2018 and the article is forthwith distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

4.
Angiogenesis ; 21(4): 751-764, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29730824

RESUMO

Inhibition of vascular endothelial growth factor (VEGF) in retinopathy of prematurity (ROP) raises concerns for premature infants because VEGF is essential for retinovascular development as well as neuronal and glial health. This study tested the hypothesis that endothelial cell-specific knockdown of VEGF receptor 2 (VEGFR2), or downstream STAT3, would inhibit VEGF-induced retinopathy without delaying physiologic retinal vascular development. We developed an endothelial cell-specific lentiviral vector that delivered shRNAs to VEGFR2 or STAT3 and a green fluorescent protein reporter under control of the VE-cadherin promoter. The specificity and efficacy of the lentiviral vector-driven shRNAs were validated in vitro and in vivo. In the rat oxygen-induced retinopathy model highly representative of human ROP, the effects of endothelial cell knockdown of VEGFR2 or STAT3 were determined on intravitreal neovascularization (IVNV), physiologic retinal vascular development [assessed as area of peripheral avascular/total retina (AVA)], retinal structure, and retinal function. Targeted knockdown of VEGFR2 or STAT3 specifically in retinal endothelial cells by subretinal injection of lentiviral vectors into postnatal day 8 rat pup eyes efficiently inhibited IVNV, and knockdown of VEGFR2 also reduced AVA and increased retinal thickness without altering retinal function. Taken together, our results support specific knockdown of VEGFR2 in retinal endothelial cells as a novel therapeutic method to treat retinopathy.


Assuntos
Células Endoteliais/metabolismo , Técnicas de Silenciamento de Genes/métodos , Terapia Genética/métodos , Neovascularização Retiniana/terapia , Vasos Retinianos/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Animais , Células Endoteliais/patologia , Vetores Genéticos , Lentivirus , Ratos , Ratos Sprague-Dawley , Neovascularização Retiniana/genética , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/patologia , Vasos Retinianos/patologia , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
5.
Methods Mol Biol ; 1753: 317-330, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29564799

RESUMO

The retina is a highly organized neural tissue consisting of three neural layers and two synaptic layers. Blood vessels that nourish the mouse and human neural retina mirror this organization consisting of three plexus layers, or plexuses, that run parallel within the retina, connected by interplexus vessels to create a closed vascular network. Here, we describe a methodology to describe this organization that can be used to interrogate factors mediating retinal vessel patterning including: coverage of the vascular plexuses, branching and orientation of the interplexus connections, and digital reconstruction of the retinal vasculature to measure vessel length and density. The methodology focuses on the mouse retina, but can easily be adapted to study retinal vessels of other species.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Retina/diagnóstico por imagem , Vasos Retinianos/diagnóstico por imagem , Animais , Processamento de Imagem Assistida por Computador/instrumentação , Camundongos , Microscopia/instrumentação , Microscopia/métodos , Retina/anatomia & histologia , Vasos Retinianos/anatomia & histologia , Software , Coloração e Rotulagem/instrumentação , Coloração e Rotulagem/métodos
6.
Sci Rep ; 8(1): 2003, 2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29386650

RESUMO

Oxygen-induced retinopathy (OIR) upregulates Müller cell vascular endothelial growth factor A (VEGFA) that causes intravitreal neovascularization similar to severe retinopathy of prematurity (ROP). Safety concerns exist with anti-VEGF treatment for ROP. We evaluated long-term knockdown of Müller cell-VEGFA with short-hairpin RNAs to VEGFA or VEGF164 via subretinal lentivirus delivery (L-VEGFAshRNA, L-VEGF164shRNA) on retinal structure and function in a rat OIR model. Lectin-stained retinal flat mounts analyzed for areas of avascular/total retina (AVA) and intravitreal neovascular/total retina (IVNV) showed initial significantly reduced IVNV by L-VEGFAshRNA and L-VEGF164shRNA compared to control, luciferase-shRNA lentivirus, without late recurrence. Spectral-domain optical coherence tomography (OCT) and immunohistochemical sections (IHC) demonstrated changes in retinal layer thicknesses in L-VEGFAshRNA or L-VEGF164shRNA  compared to control. Ganzfeld electroretinograms were increased in L-VEGFAshRNA or L-VEGF164shRNA compared to control. Erythropoietin (EPO), brain-derived neurotrophic factor, glial-derived neurotrophic factor, nerve growth factor, neurotrophin-3 (NT-3) mRNAs were increased in L-VEGFAshRNA, but not L-VEGF164shRNA retinas. In cultured rat Müller cells, knockdown of VEGF upregulated NT-3 and EPO, whereas treatment with EPO activated neuroprotective signaling. Methods to reduce IVNV by selective knockdown of VEGFA, and particularly VEGF164, in Müller cells may have fewer deleterious effects than nonselective VEGFA inhibition to all cells in the retina.


Assuntos
Retina/metabolismo , Retinopatia da Prematuridade/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Astrócitos/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Células Cultivadas , Eritropoetina/metabolismo , Técnicas de Silenciamento de Genes , Inativação Gênica , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator de Crescimento Neural/metabolismo , Neurotrofina 3/metabolismo , Ratos , Ratos Sprague-Dawley , Retina/patologia , Fator A de Crescimento do Endotélio Vascular/genética
7.
Sci Rep ; 8(1): 2161, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29391474

RESUMO

Erythropoietin (EPO) is recognized for neuroprotective and angiogenic effects and has been associated with aging and neovascular age-related macular degeneration (AMD). We hypothesized that systemic EPO facilitates the development of choroidal neovascularization (CNV). Wild type mice expressed murine EPOR (mWtEPOR) in RPE/choroids at baseline and had significantly increased serum EPO after laser treatment. To test the role of EPO signaling, we used human EPOR knock-in mice with the mWtEPOR gene replaced by either the human EPOR gene (hWtEPOR) or a mutated human EPOR gene (hMtEPOR) in a laser-induced choroidal neovascularization (LCNV) model. Loss-of-function hWtEPOR mice have reduced downstream activation, whereas gain-of-function hMtEPOR mice have increased EPOR signaling. Compared to littermate controls (mWtEPOR), hMtEPOR with increased EPOR signaling developed larger CNV lesions. At baseline, hMtEPOR mice had increased numbers of macrophages, greater expression of macrophage markers F4/80 and CD206, and following laser injury, had greater expression of cytokines CCL2, CXCL10, CCL22, IL-6, and IL-10 than mWtEPOR controls. These data support a hypothesis that injury from age- and AMD-related changes in the RPE/choroid leads to choroidal neovascularization through EPOR-mediated cytokine production.


Assuntos
Corioide/irrigação sanguínea , Neovascularização de Coroide/metabolismo , Neovascularização de Coroide/patologia , Citocinas/metabolismo , Eritropoetina/metabolismo , Macrófagos/fisiologia , Receptores da Eritropoetina/fisiologia , Animais , Células Cultivadas , Corioide/metabolismo , Modelos Animais de Doenças , Feminino , Macrófagos/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais
8.
Proc Natl Acad Sci U S A ; 114(47): E10224-E10233, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29114051

RESUMO

Mature mammalian neurons have a limited ability to extend neurites and make new synaptic connections, but the mechanisms that inhibit such plasticity remain poorly understood. Here, we report that OFF-type retinal bipolar cells in mice are an exception to this rule, as they form new anatomical connections within their tiled dendritic fields well after retinal maturity. The Down syndrome cell-adhesion molecule (Dscam) confines these anatomical rearrangements within the normal tiled fields, as conditional deletion of the gene permits extension of dendrite and axon arbors beyond these borders. Dscam deletion in the mature retina results in expanded dendritic fields and increased cone photoreceptor contacts, demonstrating that DSCAM actively inhibits circuit-level plasticity. Electrophysiological recordings from Dscam-/- OFF bipolar cells showed enlarged visual receptive fields, demonstrating that expanded dendritic territories comprise functional synapses. Our results identify cell-adhesion molecule-mediated inhibition as a regulator of circuit-level neuronal plasticity in the adult retina.


Assuntos
Axônios/fisiologia , Moléculas de Adesão Celular/fisiologia , Dendritos/fisiologia , Plasticidade Neuronal/fisiologia , Regeneração , Células Bipolares da Retina/fisiologia , Animais , Camundongos , Camundongos Knockout , Microscopia de Fluorescência por Excitação Multifotônica , Células Bipolares da Retina/citologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Potenciais Sinápticos/fisiologia
9.
Mol Vis ; 22: 705-17, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27390513

RESUMO

PURPOSE: A transgenic mouse that expresses Cre recombinase under control of the Pou4f2-promoter (also referred to as Brn-3b and Brn-3.2) was characterized. Pou4f2 expression has been reported in a subset of retinal ganglion cells (RGCs) in the retina, in the midbrain, and in the germline. In this study, we characterize the expression pattern of this Cre-recombinase line and report its utility in targeted deletion, temporal deletion, RGC depletion, and germline targeting, which can be regulated by the sex of the Cre-carrying mouse. METHODS: Pou4f2(Cre) was mapped by using a combination of PCR and sequencing of PCR products to better understand the construct and to locate where it was inserted within the Pou4f2 locus. Cre expression patterns were examined by crossing Pou4f2(Cre/+) mice to Cre reporter mice. Immunohistochemistry was used to further define the pattern of Cre expression and Cre-mediated recombination within the retina, brain, and other tissues. RESULTS: An internal ribosome entry site (IRES)-Cre cassette was inserted into the Pou4f2 gene disrupting normal gene function, as verified by the depletion of RGCs in mice homozygous for the insert. Pou4f2(Cre) expression was observed in the retina, brain, peripheral neurons, and male germ cells. Germline recombination was observed when the sire carried the Cre and the target for recombination. In all other breeding schemes, recombination was observed within subsets of cells within the retina, brain, intestines, heart, and gonads. In the retina, Cre efficiently targets recombination in neurons within the RGC layer (RGL), the inner nuclear layer (INL), and a small percentage of photoreceptors, activity that has not been previously reported. Unlike most other Cre lines active in the inner retina, recombination in Müller and other glia was not observed in mice carrying Pou4f2(Cre) . Within the visual centers of the brain, Cre targets recombination in about 15% of cells within the superchiasmatic nucleus, lateral geniculate nucleus, and superior colliculus. CONCLUSIONS: Pou4f2(Cre) provides multiple uses for the vision researcher's genetic toolkit. First, Pou4f2(Cre) is a knock-in allele that can be used to eliminate Pou4f2, resulting in depletion of RGCs. Second, expression of Cre in male germ cells makes this strain an efficient germline activator of recombination, for example, to target LoxP-flanked sequences in the whole mouse. Third, Pou4f2(Cre) efficiently targets RGCs, amacrine cells, bipolar cells, horizontal cells, and a small number of photoreceptors within the retina, as well as the visual centers in the brain. Unlike other Cre recombinase lines that target retinal neurons, no recombination was observed in Müller or other retinal glia. These properties make this Cre recombinase line a useful tool for vision researchers.


Assuntos
Encéfalo/metabolismo , Regulação da Expressão Gênica/fisiologia , Técnicas de Introdução de Genes , Proteínas de Homeodomínio/genética , Integrases/genética , Retina/metabolismo , Células Ganglionares da Retina/metabolismo , Fator de Transcrição Brn-3B/genética , Alelos , Animais , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia de Fluorescência , Biologia Molecular/métodos , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas , Recombinação Genética , Análise de Sequência de DNA
10.
Invest Ophthalmol Vis Sci ; 57(4): 1563-77, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27046121

RESUMO

PURPOSE: Abnormal retinal angiogenesis leads to visual impairment and blindness. Understanding how retinal vessels develop normally has dramatically improved treatments for people with retinal vasculopathies, but additional information about development is required. Abnormal neuron patterning in the outer retina has been shown to result in abnormal vessel development and blindness, for example, in people and mouse models with Crumbs homologue 1 (CRB1) mutations. In this study, we report and characterize a mouse model of inner retinal lamination disruption and bleeding, the Down syndrome cell adhesion molecule (Dscam) mutant, and test how neuron-neurite placement within the inner retina guides development of intraretinal vessels. METHODS: Bax mutant mice (increased neuron cell number), Dscam mutant mice (increased neuron cell number, disorganized lamination), Fat3 mutant mice (disorganized neuron lamination), and Dscam gain-of-function mice (Dscam(GOF)) (decreased neuron cell number) were used to manipulate neuron placement and number. Immunohistochemistry was used to assay organization of blood vessels, glia, and neurons. In situ hybridization was used to map the expression of angiogenic factors. RESULTS: Significant changes in the organization of vessels within mutant retinas were found. Displaced neurons and microglia were associated with the attraction of vessels. Using Fat3 mutant and Dscam(GOF) retinas, we provide experimental evidence that vessel branching is induced at the neuron-neurite interface, but that other factors are required for full plexus layer formation. We further demonstrate that the displacement of neurons results in the mislocalization of angiogenic factors. CONCLUSIONS: Inner retina neuron lamination is required for development of intraretinal vessels.


Assuntos
Modelos Animais de Doenças , Retina/anormalidades , Hemorragia Retiniana/etiologia , Neovascularização Retiniana/etiologia , Neurônios Retinianos/patologia , Animais , Western Blotting , Caderinas/genética , Moléculas de Adesão Celular/genética , Contagem de Células , Proteínas do Citoesqueleto , Glicoproteínas/metabolismo , Hibridização In Situ , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Mutantes , Microscopia Confocal , Hemorragia Retiniana/metabolismo , Hemorragia Retiniana/patologia , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/patologia , Vasos Retinianos/patologia , Semaforinas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteína X Associada a bcl-2/genética
11.
J Neurosci ; 35(14): 5640-54, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25855178

RESUMO

In this study we develop and use a gain-of-function mouse allele of the Down syndrome cell adhesion molecule (Dscam) to complement loss-of-function models. We assay the role of Dscam in promoting cell death, spacing, and laminar targeting of neurons in the developing mouse retina. We find that ectopic or overexpression of Dscam is sufficient to drive cell death. Gain-of-function studies indicate that Dscam is not sufficient to increase spatial organization, prevent cell-to-cell pairing, or promote active avoidance in the mouse retina, despite the similarity of the Dscam loss-of-function phenotype in the mouse retina to phenotypes observed in Drosophila Dscam1 mutants. Both gain- and loss-of-function studies support a role for Dscam in targeting neurites; DSCAM is necessary for precise dendrite lamination, and is sufficient to retarget neurites of outer retinal cells after ectopic expression. We further demonstrate that DSCAM guides dendrite targeting in type 2 dopaminergic amacrine cells, by restricting the stratum in which exploring retinal dendrites stabilize, in a Dscam dosage-dependent manner. Based on these results we propose a single model to account for the numerous Dscam gain- and loss-of-function phenotypes reported in the mouse retina whereby DSCAM eliminates inappropriately placed cells and connections.


Assuntos
Moléculas de Adesão Celular/metabolismo , Dendritos/metabolismo , Células Ependimogliais/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Neurônios/fisiologia , Retina/citologia , Células Amácrinas/metabolismo , Animais , Animais Recém-Nascidos , Moléculas de Adesão Celular/genética , Morte Celular/genética , Células Cultivadas , Dendritos/ultraestrutura , Eletrorretinografia , Células Ependimogliais/ultraestrutura , Proteínas do Olho/genética , Proteínas de Homeodomínio/genética , Proteínas Luminescentes/genética , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica , Mutação , Rede Nervosa/fisiologia , Neurônios/ultraestrutura , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/genética , Proteínas Repressoras/genética , Vias Visuais/crescimento & desenvolvimento , Vias Visuais/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...